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ON WAVE SOLUTIONS OF THE HEAT-CONDUCTION 
EQUATION 

A. V. LUIKOV,* V. A. Bumovt and I. A. SOLOVIEV$ 

(Received 2 October 1974) 

Abstract-Some examples are presented of wave equations of a parabolic-type heat-conduction equation. 
Their incorrectness is demonstrated. Further the derivation is presented of the hyperbolic heat-conduction 
equation wherein the velocity of isotherm displacement along the normal is used as an experimental 
parameter. 

The above examples are analysed on the basis of the heat-conduction equations of a hyperbolic type 
and their correctness is proved following Hadamard. 

NOMENCLATURE 

temperature; 

time; 
spatial coordinate; 
thermal conductivity; 
heat capacity. 

ISOTHERMS FOR WAVE SOLUTIONS 

Following Hadamard, let A, be equal to e-xn. It 

should be borne in mind that at n + o expression (1 S) 
vanishes. 

Next, consider a norm of solution differences satis- 

fying the initial data 

IIexp[-(Jn)-n’tlsinnx-Oil 

= max lexp[ - (Jn) -n’t] sin nxl 
_I\,..,__ 

FOR A one-dimensional case the classical heat-conduc- 

tion equation is of the form 

(1.0) 
(1.6) 

If y and k are constant, thermal conductivity may be 
included into a spatial coordinate with the aid of the 

transform x = ,/(y/k)X 

8T d2T 
_- 

at - 2x2 
(1.1) 

Equation (1.1) may be satisfied by two wave solutions. 
A rightward travelling wave is defined by the formula 

Ti(x, t) = Aexp[-c(x-ct)] (1.2) 

and the inverse wave is of the form 

Hence it follows that at n -+ CC the norm of solution 

differences becomes infinitely large at finite to when the 
difference between the initial data tends to zero. There- 
fore, the proposed problem appears to be incorrect 
according to Hadamard. 

In addition to incorrectness, solution (1.4) possesses 

one more peculiar feature. 
Let us determine a line of equal temperatures 

T(X, t) = const. The following equality is valid for it 

aT dXdT 
dt+zdt=o. (1.7) 

T2(x, t) = Aexp[c(x+ct)]. (1.3) Designate the velocity 
If further we pass over to the imaginary numbers c = in, 
A = 2iA,, then the difference T = T2 - Tl will be ex- 
pressed by the following formula 

C(X,f)=d$ 

T(x, t) = A,exp[ -n*t] sin nx. (1.4) In the considered one-dimensional case C coincides 

At t,, < t < 0,O f x < x fc rrmula (1.4) may be treated 
with the velocity of an isotherm which, in its turn, is 
d-r- ---‘---> as a ratio between infinitesimal increment 

as a solution of the temperature history problem of a 
uetrrmmeu 

heated body from its state at the given moment. 
of the norm; 

It is not difficult to demonstrate that at to < t f 0 
time interva 

the problem under consideration is incorrect according 
It follows nom ( 

al external to an isotherm and infinitesimal 
11. 
I ‘1.7) that 

to Hadamard [l]. Really, let us evaluate a norm of dT 

close initial data 

IIA,sinnx-011 =(Om;:nj/A.sinnxl C A,. (1.5) 
. . 
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(1.8) 

1.4) formula (1.8) takes the form 

.J($j= Jcjntannx. (1.9) 
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An analysis of formula (1.9) reveals that there are 
points where velocity C vanishes or becomes infinite. 

The marked peculiarities should make investigators 
be careful when employing the heat-conduction equa- 
tion (1.1). 

Employing a heat-conduction equation in the form 
(1. l), we may relate the velocity C to heat capacity and 
thermal conductivity as 

iX 

In a particular case this formula permits us to con- 

sider c = c(T) by analogy with the classical heat- 
conduction theory, i.e. the relation with the coordinates 

X and t may be implicit through temperature. 

2. DERIVATION OF THE HYPERBOLIC 
HEAT-CONDUCTION EQUATION 

Rewrite equation (1.7) as 

(2.1) 

Differentiation of equation (2.1) in succession with 
respect to X and t followed by elimination of the mixed 

derivative ~?~T/i?Xar from the two equalities obtained 
results in 

By using (1.Q we eliminate dT/dX and rewrite the 
above equality as 

(2.3) 

Equation (2.3) turns into (1.1) if c -+ yi and 

1 dc I& ; c2 =--- -t-E. 
L 1 c ?t 

The condition c --t K does not however imply that the 
classical heat-conduction equation (1.1) describes only 

the process when isotherms move with infinite velocity. 
Really, in wave solutions (1.2) and (1.3) the isotherms 
have finite velocities. 

In case of the constant isotherm velocity, equation 
(2.3) is simplified to the form of the classical wave 

equation 

(2.4) 

Based on the theory of Riemannian manifolds this 
equation was obtained by A. S. Predvoditelev [2]. 

Let c = c(X), then equation (2.3) acquires the form 

1 ?2T 1 dc i?T ?‘T 
;i>f2+~~~=~. (2.5) 

If (l/c’)(dc/dX) = (y/K), where 7 and K are heat 
capacity and thermal conductivity, respectively, then 

Divide both parts of the last relationship by ;‘,X 

Since kjl’ is the constant value, thermal conductivity 
may be included into a spatial coordinate with the aid 
of the particular transform .Y = \;‘(y:I\)X; besides, in 
some cases the cofactor at ?‘T.‘:t2 may be approxi- 

mately assumed equal to the constant parameter 7.. 
Then. finallv 

(2.6) 

In unsteady heat-transfer problems the isotherm 
velocity is likely to depend on time. Then equation 

(2.3) becomes 
1 i27 1 dc?T i;2 7 

(.z &2 c3 dt i;t ?X2 
(2.7) 

In a particular case equation (2.7) may turn into (2.6) 

3. SOLUTION OF SOME INCORRECTLY STATED 
HEAT-CONDUCTION PROBLEMS 

The reported disadvantages of heat conduction equa- 
tion (1.1) make new equation (2.6) preferable. 

Moreover, from the point of view of the existing 
methods of solving incorrectly stated problems 

i: 

r’2 (7 ?2 
i. .- + ;7 - ~ - 

cv CV 1 

may be considered as an operator close to the initial 
one [(a/&) - (i32/f3x2)] at small i. 

By using equation (2.6) it is easy to obtain solutions 
for direct and inverse waves in the form 

T,(x, t) = Aexp 

Assuming c = in, A = 2iA, and composing T2 - Tl yield 

T( 4 

It is evident that at 1+ 0 solution (3.1) converges to 
solution (1.4). 

Next, we shall demonstrate that close solutions cor- 
respond to close initial data 

tfx 
T, = exp[ - Jn] sin __- 

1 -t/b? 

and T2 = 0. 
Really 

< exp [ - jn] 

II T,k O- 7’2(-~, t)ll 

(3.2) 
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Hence it follows that at 1 # 0 and n + co right-hand 

sides of (3.2) and (3.3) vanish that implies disappear- 

ance of instability. 
Note, that solution (3.1) may be obtained by using a 

non-homogeneous heat-conduction equation of the 

type 

ar a27- -__-_1 
at ax2 

n2t . nx 
xexp -__ 

[ I l-An2 
sin m. (3.4) 

Here the function 

B&LA)= -i(&)2exp[ -&]sin$ 

characterizes generation and absorption of heat. Addi- 

tion to equation (1.1) of a non-homogeneous term 
vanishing at A--) 0 and corresponding to L(a2T/at2) in 
equation (2.6) means that from the point of view of 

general approach to solution of incorrectly stated 
problems the initial operator is replaced by a close one. 
On the other hand, presence of positive and negative 
heat sources arranged in a special way explains a 
possibility for non-damping solutions to exist. 

Calculate c(x, t) for (3.1) 

C= (3.5) 

If for solution (1.4) obtained from equation (1.1) there 
are points where c = 0 or c = cc then for solution (3.1) 
as it is seen from (3.5), this peculiarity may be eliminated 

by a correct choice of A. It means that heating through 
the substance from a boundary into the region 0 < x c n 
will proceed with a finite rate different from zero. 

As another example of unsteady-state solution con- 

sider a temperature wave at x > 0: 

T(x, t) = A,,exp[/(i)x]cos[/(z)x+nt]. (3.6) 

Function T(x, t) defined by (3.6) satisfies heat-conduc- 
tion equation (1.1) and the boundary condition [3] 

T(0, t) = A”COS nt. 

We shall prove incorrectness of the problem. Take A,, 
equal to l/n and compare the boundary conditions 
Ti(0, t) = l/ncos nt and T2(0, t) G 0. 

11 T,(O, t) - T2(0, t)lj = max ! cos nt = ;. 
I I 

(3.7) 
(I>o) n n 

Next, compare at some limited region 0 < x < x0 the 
solutions Ti = l/nexp[,/(n/2)x] cos[J(n/2)x+nt] and 
T2 E 0 corresponding to the boundary conditions 

II G (5 t) - 7% t) II 

n 
exp Id> I, - x0 

2 
< (3.8) 

n 

It can be seen here that at n + CC expression (3.7) 
vanishes and (3.8) tends to infinity, i.e. infinitely close 

solutions correspond to infinitely close boundary con- 
ditions. Turning again to solution (2.6) it is easy to get 

a solution similar to the temperature wave (3.6) as 

Now close solutions 

Tl = 5 exp{ [: (JL2n2 + 1 -in)]irj 

x cos 

(1 
f(Jm-in) +x+nt 

I I 

and T2 = 0 correspond to close boundary conditions 
Ti(0, t) = l/n cos nt and T,(O, t) = 0. Indeed, consider 
the norm of the difference 

II Gk t)- 72x, t)I/ 

= 

IF 1 
i 

x cos ;(JA 2n2+1-i.n) x+nt 
ii 

1 

n i[ 

t 
<-exp ;(J 12n2+ 1-h) x0 

1 I (3.10) 

Since 

lim 5 [J(J2n2 + 1) -InIx = 2 
n-m 

then at each fixed x0 and 1. # 0 a RHS of inequality 
(3.10) tends to zero at n --P cc that testifies to stability 
of the presented solutions based on the initial data. 

The examples considered may suggest an idea of 
employing hyperbolic heat-conduction equation (2.3) 
for description of wave propagation of temperature 
since expression (2.3) does away with many unpleasant 
peculiarities of solutions when classical equation (1.1) 
is used. 

The equation of hyperbolic type is preferable for 

describing thermal effects due to the remarkable fact 
that many solutions of heat-conduction equation and 
even a fundamental one may be represented as com- 
binations of temperature waves of the form 

exp[ ~~~s)x]cos[iJ(~~x+nt+,]. [4]. 
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SUR DES SOLUTIONS ONDULATOIRES DE L’EQUATION DE LA CHALEUR 

Rbsumk-On donne quelques exemples de solutions ondulatoires de l’equation de la chaleur de type 
parabolique et leur inexactitude est demontree. La formulation est alors presentee de I’equation de la 
chaleur hyperbolique dans laquelle la vitesse de deplacement d’une isotherme suivant la normale est 
utilisee comme paramttre experimental. 

Les exemples precedents sont analyses sur la base de I’equation de la chaleur de type hyperbolique 
et leur exactitude est montree en s’appuyant sur Hadamard. 

UBER WELLENLO~UNGEN DER WARMELEITUNG~GLEICHUNG 

ZusammenfassungpEs werden einige Beispiele angegeben fur Wellengleichungen vom parabolischen 
Typ. Ihre Ungenauigkeit ist gezeigt. Weiterhin wird die Ableitung der hyperbolischen Warmeleitungs- 
gleichung wiedergegeben, wobei die Geschwindigkeit der Isothermenausbreitung langs der Normalen als 
ein experimenteller Parameter eingefiihrt ist. Die obigen Beispiele werden analysiert aufgrund der 
Warmeleitungsgleichungen vom hyperbolischen Typ, und ihre Ubereinstimmung wird nach Hadamard 

nachgewiesen. 

0 BOJTHOBblX PELUEHMRX YPABHEHIIJI TEl-IJIOI-IPOBO~HOCTM 

.kiHoTaqHA- flpMBCfleHbl IIpHMepbl BOJIHOBbIX peIlIeH&ii% yJJaBHeHWl TeIIJlOIIpOBOJIHOCTH Ilapa- 

6onmieckoro Tkina. flOKa3blBaeTCR HX HeKOPpeKTHOCTb. &Viee ,&leTCfl BbIBOA rnnep6oneuecxoro 
ypaBHeHMR TeIlJIOIIpOBOAHOCTEi, B KOTOPOM B Ka'IeCTBe 3KCllepHMeHTiUlbHOrO IIapaMeTpa HClTOJJb- 

3yeTcn cKopocrb nepeMemensn a3orepMbr no HopMane. 
YKa3aHHblenpMMepbI pa36eparorcn Ha OCHOBeypaBHeHHSlTeIl~OIIpOBO~HOCTH runep6onnrecroro 

TKIIFI M ilOKa3bIBaeTCR HX KOpPeKTHOCTb II0 AnaMapy. 


