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ON WAVE SOLUTIONS OF THE HEAT-CONDUCTION
EQUATION
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Abstract—Some examples are presented of wave equations of a parabolic-type heat-conduction equation.
Their incorrectness is demonstrated. Further the derivation is presented of the hyperbolic heat-conduction
equation wherein the velocity of isotherm displacement along the normal is used as an experimental

parameter.

The above examples are analysed on the basis of the heat-conduction equations of a hyperbolic type
and their correctness is proved following Hadamard.

NOMENCLATURE
T, temperature;
t, time;
X, spatial coordinate;
k, thermal conductivity;
Vs heat capacity.

1. ISOTHERMS FOR WAVE SOLUTIONS

FOR A one-dimensional case the classical heat-conduc-
tion equation is of the form

aT 0 L oT
o Tox\Tax)
If y and k are constant, thermal conductivity may be

included into a spatial coordinate with the aid of the
transform x = ,/(y/k} X

oT T
ot ext’

Equation(1.1) may be satisfied by two wave solutions.
A rightward travelling wave is defined by the formula

(1.0

(1.1)

Ti(x, 1) = Aexp[ ~c(x—ct)] (1.2
and the inverse wave is of the form
Ty(x, 1) = Aexplc(x+ct)]. (1.3)

Iffurther we pass over to the imaginary numbers ¢ = in,
A = 2iA,, then the difference T = T, — T, will be ex-
pressed by the following formula

T(x,t) = A,exp[ —n*t]sinnx. (1.4

At to £t <0,0< x <7 formula (1.4) may be treated
as a solution of the temperature history problem of a
heated body from its state at the given moment.

It is not difficult to demonstrate that at t, <t <0
the problem under consideration is incorrect according
to Hadamard [1]. Really, let us evaluate a norm of
close initial data

| A,sinnx—0| = max |A,sinnx| < A4,.

{0<x<n)

(1.5
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Following Hadamard, let 4, be equal to e " |t
should be borne in mind that at n — o expression (1.5)
vanishes.

Next, consider a norm of solution differences satis-
fying the initial data

lexp[ — (/n) —n?t]sin nx—0|
= max |exp[—(/n)—n’t]sinnx|

0<x<n

{:osrso}
< exp[n?|tol]
exp[y/n]

Hence it follows that at n — oo the norm of solution
differences becomes infinitely large at finite ¢, when the
difference between the initial data tends to zero. There-
fore, the proposed problem appears to be incorrect
according to Hadamard.

In addition to incorrectness, solution (1.4) possesses
one more peculiar feature.

Let us determine a line of equal temperatures
T(X, t) = const. The following equality is valid for it

6T+dXOT_
ot dt 0X

(1.6)

(L.7)

Designate the velocity

dx
C(X, I)=E*

In the considered one-dimensional case C coincides
with the velocity of an isotherm which, in its turn, is
determined as a ratio between infinitesimal increment
of the normal external to an isotherm and infinitesimal
time interval.
It follows from (1.7) that

oT
ot
oT
0X

Now, for solution of (1.4) formula (1.8) takes the form

T ) v

CX,0)=— (1.8)
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An analysis of formula (1.9) reveals that there are
points where velocity C vanishes or becomes infinite.

The marked peculiarities should make investigators
be careful when employing the heat-conduction equa-
tion (1.1).

Employing a heat-conduction equation in the form
(1.1), we may relate the velocity C to heat capacity and

thermal conductivity as
1 e K o
»OX U éX )

oT
cX

In a particular case this formula permits us to con-
sider ¢ = ¢(T) by analogy with the classical heat-
conduction theory, i.e. the relation with the coordinates
X and r may be implicit through temperature.

CX,t)=—

2. DERIVATION OF THE HYPERBOLIC
HEAT-CONDUCTION EQUATION

Rewrite equation (1.7) as

T cxnLog 21
g X5 =0 2
Differentiation of equation (2.1) in succession with
respect to X and ¢ followed by elimination of the mixed
derivative 9*T/0X 0t from the two equalities obtained
results in

T <8(‘ (7c'>6T _c2 T (22)

— 4= o =Cr s

ar? ot 06X /)oX ox?
By using (1.8), we eliminate 67/0X and rewrite the
above equality as

18*T 1[éc 1écleT
2ot AloX et

T

Equation (2.3) turns into (1.1) if ¢ —» oo and

1[de 1éc v
Bl Bl BN
AleX cat| K

The condition ¢ — oc does not however imply that the
classical heat-conduction equation (1.1) describes only
the process when isotherms move with infinite velocity.
Really, in wave solutions (1.2) and (1.3) the isotherms
have finite velocities.

In case of the constant isotherm velocity, equation
(2.3) is simplified to the form of the classical wave
equation

T o T

or? - 8x?

(24)

Based on the theory of Riemannian manifolds this
equation was obtained by A. S. Predvoditelev [2].

Let ¢ = ¢(X), then equation (2.3) acquires the form

1 aZT+ I de dT &1 25
2ot AdX o exE i

If (1/c*)(dc/dX) = (y/K), where 7 and K are heat
capacity and thermal conductivity, respectively, then

Y ¥+ const 232T+ vy 0T T
L const | ——5 4> =,
K a*r K& ax?

Divide both parts of the last relationship by 7 /k

/ & Y4 . /f(/\') = FZT+ T kST
! con; e
\Y (’\) TV e e Ty axe

Since k/y is the constant value, thermal conductivity
may be included into a spatial coordinate with the aid
of the particular transform x = ,/(y/k)X; besides, in
some cases the cofactor at @*T/Ct* may be approxi-
mately assumed equal to the constant parameter A.

Then, finally i
8T ¢T  0°T

St = . (2.6
a0t ax? )
In unsteady heat-transfer problems the isotherm

velocity 1s likely to depend on time. Then equation

(2.3) becomes

=, (2.7)

In a particular case equation (2.7) may turn into (2.6)

3. SOLUTION OF SOME INCORRECTLY STATED
HEAT-CONDUCTION PROBLEMS
The reported disadvantages of heat conduction equa-
tion (1.1) make new equation (2.6) preferable.
Moreover, from the point of view of the existing
methods of solving incorrectly stated problems

R R L
bt
ot ot ox?

may be considered as an operator close to the initial
one [(8/0t) — (3*/6x?)] at small 4.

By using equation (2.6) it is casy to obtain solutions
for direct and inverse waves in the form

Ti(x,1) = Aexp{—];%(j(x_(,[)} :

T(x,t)=A exp[i%; (x+ cz)] .

Assuming ¢ = in, 4 = 2iA,and composing T, — T; yield

2
n-t

T(x, 1) = A,,exp[—— ]si

nx

— 3.1
n1+)m2 G-

14 an?
It is evident that at A — 0 solution (3.1) converges to
solution (1.4).
Next, we shall demonstrate that close solutions cor-
respond to close initial data

.. onx
T, = exp[ —/n]sin TR
and T, = 0.
Really
ITi— T = max |exp[~</n]sin-——o——0
Tl = me —nls -
oo 10sx<r Pl n1+/1n2 |
< exp[—/n] (3.2)
1 Ti(x, )= Ta(x, )|
’12[ . nx
= max - - M
OSYaSn‘ exp[ W l+2n2]sml+/1n2
{toSlSO}
< exp| —(ym— 10 33
< — (/- ) .
p” T 14 in? (3-3)
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Hence it follows that at A # 0 and n — <o right-hand
sides of (3.2) and (3.3) vanish that implies disappear-
ance of instability.

Note, that solution (3.1) may be obtained by using a
non-homogeneous heat-conduction equation of the

type
oT _ 0:T J n?
ot ox* 1+ in?

n’t ], nx
X Cxp[—m] smw. (34)

Here the function

n? \? nt ] . nx

foot )= ‘*(?mrz) P[‘m*]m—
characterizes generation and absorption of heat. Addi-
tion to equation (1.1) of a non-homogeneous term
vanishing at A — 0 and corresponding to A(82T/0t?) in
equation (2.6) means that from the point. of view of
general approach to solution of incorrectly stated
problems the initial operator is replaced by a close one.
On the other hand, presence of positive and negative
heat sources arranged in a special way explains a
possibility for non-damping solutions to exist.

Calculate c(x, t) for (3.1)

k ; nx
c= [|-)ntan——.
y [+ An?

If for solution (1.4) obtained from equation (1.1) there
are points where ¢ = Q or ¢ = oo then for solution (3.1),
as it is seen from (3.5), this peculiarity may be eliminated
by a correct choice of 4. It means that heating through
the substance from a boundary into the region0< x <=
will proceed with a finite rate different from zero.

As another example of unsteady-state solution con-
sider a temperature wave at x > 0:

= aso] (2)<Joo] J(Zpeen]. 0

Function T(x, r) defined by (3.6) satisfies heat-conduc-
tion equation (1.1) and the boundary condition [3]

(3.5

T(0,t) = A,cosnt.

We shall prove incorrectness of the problem. Take A,
equal to 1/n and compare the boundary conditions
Ty(0,t) = 1/ncosnr and T»(0,t) = 0.

I'T3(0, 1) = T5(0, 1)]] = max

{120}

(3.7

1
—cosnt
n

Next, compare at some limited region 0 € x < x¢ the
solutions T; = 1/nexp[/(n/2)x] cos[/(n/2)x + nt] and
T, = 0 corresponding to the boundary conditions

I Ta{x, 1) = Ta(x, 1) |

o 04

= max

{0<x<xg}
120

(3.8)

It can be seen here that at n —» oo expression (3.7)
vanishes and (3.8) tends to infinity, ie. infinitely close
solutions correspond to infinitely close boundary con-
ditions. Turning again to solution (2.6) it is easy to get
a solution similar to the temperature wave (3.6) as

I ¥
T(x,t) = A,exp ﬂig (VAP +1— An)} x}
X cos%[g (VA2nt+ 1 —/ln)}zm— nt} . 39

Now close solutions
1 "I .
T, = ~exp{| = (/A*n* +1—1n) | x
n 2
X cos{[g (JAn*+1 —/ln)} X+ nt}

and T; = 0 correspond to close boundary conditions

T1(0,1) = I/ncosnt and T,(0,t) = 0. Indeed, consider
the norm of the difference

I Th(x, 1) = Ta(x, 0) |
1 nomT I H
vexp{ {4 n2+1—,1n)j' x}
0<x< xq n 2
{ 120 }
[N H
% COS{{ (\/iznl-i—l—).n):‘ x+ nl}

1 n, —5—— o
<- GXP{[E (JAtnt+1 —An):' xo}.
n

Since

= max

[\ SR

(3.10)

lim g [J(2n? 4+ 1) = in]xo = %
then at each fixed xo and A # 0 a RHS of inequality
(3.10) tends to zero at n — oo that testifies to stability
of the presented solutions based on the initial data.

The examples considered may suggest an idea of
employing hyperbolic heat-conduction equation (2.3)
for description of wave propagation of temperature
since expression (2.3) does away with many unpleasant
peculiarities of solutions when classical equation (1.1)
is used.

The equation of hyperbolic type is preferable for
describing thermal effects due to the remarkable fact
that many solutions of heat-conduction equation and
even a fundamental one may be represented as com-
binations of temperature waves of the form

exp| = (3] Jooo 2 [(Z)mre]. 14y
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SUR DES SOLUTIONS ONDULATOIRES DE L’EQUATION DE LA CHALEUR

Résume—On donne quelques exemples de solutions ondulatoires de 'équation de la chaleur de type
parabolique et leur inexactitude est démontrée. La formulation est alors présentée de I'équation de la
chaleur hyperbolique dans laquelle la vitesse de déplacement d’une isotherme suivant la normale est
utilisée comme parameétre expérimental.
Les exemples précédents sont analysés sur la base de I'équation de la chaleur de type hyperbolique
et leur exactitude est montrée en s’appuyant sur Hadamard.

UBER WELLENLOSUNGEN DER WARMELEITUNGSGLEICHUNG

Zusammenfassung —Es werden einige Beispiele angegeben fiir Wellengleichungen vom parabolischen

Typ. Ihre Ungenauigkeit ist gezeigt. Weiterhin wird die Ableitung der hyperbolischen Wérmeleitungs-

gleichung wiedergegeben, wobei die Geschwindigkeit der Isothermenausbreitung lings der Normalen als

ein experimenteller Parameter eingefiihrt ist. Die obigen Beispiele werden analysiert aufgrund der

Wirmeleitungsgleichungen vom hyperbolischen Typ, und ihre Ubereinstimmung wird nach Hadamard
nachgewiesen.

O BOJIHOBBIX PEHIEHUAX YPABHEHMs TEIIJIOITPOBOJHOCTH

Annorauns — [IpuBeaeHb! MPUMEPb! BOJIHOBBIX DEIUCHMM YPaBHEHHA TEIUIONPOBOAHOCTH Mapa-
Gonuueckoro Tuna. I1oka3biBaeTcs HX HEKOPPEKTHOCTh. [laJjiee AaeTca BbIBOA runepbOIHYECKOro
YPaBHEHUS TEIUIONMPOBOAHOCTH, B KOTOPOM B KAye€CTBE HKCIIEPUMEHTANILHOIO NapameTpa HCIonb-
3YETCS CKOPOCTh IMEPEMELIEHUS U30TEPMbI IO HOPMaJTH.
Yka3zauHble npuMepbl pa3bHParoTCa Ha OCHOBE yPaBHEHHSA TEIUIONPOBOAHOCTH THIIEPOOIHYECKOTO
THIIA Y AOKA3bIBAETCHA KX KOPPEKTHOCTD 110 AaMapy.



